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Abstract– The computational drawbacks of existing numerical methods have forced researchers to 
rely on heuristic algorithms. Heuristic methods are powerful in obtaining the solution of 
optimization problems. Although these methods are approximate methods (i.e. their solutions are 
good, but probably not optimal), they do not require the derivatives of the objective function and 
constraints. Also, the heuristics use probabilistic transition rules instead of deterministic rules. 
Here, an evolutionary algorithm based on the hybrid genetic algorithm (GA) and particle swarm 
optimization (PSO), denoted by HGAPSO, is developed in order to solve force method-based 
simultaneous analysis and design problems for frame structures. Suitability of the HGAPSO 
algorithm is compared to both GA and PSO for all the design examples, demonstrating its 
efficiency and superiority, especially for frames with a larger number of redundant forces.           

 
Keywords– Simultaneous analysis and design, force method, trusses, frames, hybrid genetic algorithm and particle 
swarm optimization  
 

1. INTRODUCTION 
 

In the structural optimization literature, simultaneous analysis and design (SAND) formulation is a major 
class of alternative formulations, discussed since the 1960s. In this approach, the state and design variables 
are treated simultaneously as optimization variables. The analysis equations become an equality constraint 
in terms of the variables. SAND basically formulates the optimization problem in a mixed space of design 
and state variables to embed the analysis equations in a single optimization problem. Therefore, no 
explicit structural analysis or design sensitivity analysis is needed. Although theoretically very attractive, 
SAND formulations have one main difficulty: the problem becomes very large in terms of variables and 
constraints. 

An early attempt to include state variables in the structural optimization problem was made by Schmit 
& Fox [1]. The basic idea was to transform an inequality-constrained minimization problem in the design 
variable space into an unconstrained problem in a space of mixed design and state variables. Detailed 
reviews of SAND formulations have been presented by Arora & Wang [2]. Most of these formulations are 
based on the displacement method of analysis, and equilibrium equations are used to form the equality 
constraints (Orozco & Ghattas [3, 4], Wu & Arora [5], Haftka & Kamat [6], Schmit & Fox [1], Ringertz 
[7], Kirsch & Rozvany [8], Larsson & Ronnqvist [9]). Force method is also employed for SAND by 
Kaveh & Rahami [10, 11] using GA.  
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In this paper, a force method-based SAND is presented and the compatibility equations are used to 
form the equality constraint based on the concept of minimum complementary strain energy. For 
optimization a hybrid form of GA and PSO is employed. 

This paper is organized as follows. In section 2, the SAND problem based on the force method is 
formulated. In section 3, the PSO and GA algorithms are introduced briefly. In section 4, the HGAPSO 
algorithm and the optimization operators are described in detail. In section 5, HGAPSO is applied to 
different structures with continuous and discrete variables and the results are compared to those of 
standard PSO and standard GA. Finally, concluding remarks are presented in section 6. 
 

2. FORCE METHOD BASED SAND FORMULATION 
 
In the SAND approach, the formulation of the problem is modified by treating the state and design 
variables q (redundant forces) and b as independent optimization variables. In order to describe the 
approach, let us define a compound vector of optimization variables as [ ]tqbx = . The optimization 
problem is now expressed in terms of the vector x as follows: 
Find x to minimize the weight function: 
 

∑ ∑
= =

=
nd

1s

nm

i
ilbAρ

1
s )( )(bW                (1) 

Subjected to the constraints: 
 

0)( =xh                                             (2.1) 

gi nig ,...,1     , 0)( =≤x                     (2.2) 

 
where x is the vector containing the design variables and redundant forces; A(bs) is the cross-sectional 
area for the sth group with nm members, related to the bsth section available in the profile list S; nd is the 
number of design variables or the number of member groupings; ng shows the number of inequality 
constraints. 
 
The equality constraint: The formulation is based on the principle of minimum complementary strain 
energy ( cU ). 

Suppose { } { }T
21 ppp NL=p  is the vector of nodal forces, { } { }T

21 qqq RL=q  contains the 
redundant forces, and { } { }T

21 rrr ML=r  is comprised of the internal forces of the members. From 
equilibrium we have 

{ } [ ]{ } [ ]{ } [ ] ⎥⎦
⎤

⎢⎣
⎡=+= q
pBBqBpBr      1010                    (3) 

 
By removing the constraints or cutting the members corresponding to redundants, a statically determinate 
structure, known as the basic (primary) structure, will be obtained. [ ]{ }pB  0  is known as a particular 
solution which satisfies equilibrium with the imposed load to the primary structure. [ ]{ }qB  1  is a 
complementary solution formed from a maximal set of independent self-equilibrating stress systems, 
known as statical basis [12, 13]. 

The complementary strain energy ( cU ) is calculated as 
 

{ } [ ]{ }rFr    
2
1

m
T=cU                   (4) 

where [ ]mF  is the unassembled flexibility matrix of the structure. Now { }q  should be calculated such that 
cU  becomes minimum. Substituting { }r  from Equation (3) in Equation (4) leads to 
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pHqp =⎥⎦
⎤

⎢⎣
⎡=cU    (5) 

 
Decomposing the matrix [ ]H  into four submatrices [ ]ppH , [ ]pqH , [ ]qpH , and [ ]qqH , we obtain cU  as 
 

{ } [ ]{ } { } [ ]{ } { } [ ]{ } { } [ ]{ }( )q Hqp Hqq HppHp          
2
1

qq
T

qp
T

pq
T

pp
T +++=cU   (6) 

 
In order to satisfy the compatibility conditions, relative displacements in the released positions 

(member cuts) for the basic structure must be zero. By considering the second theorem of Castigliano, the 
partial derivative of the complementary strain energy cU  with respect to the redundants { }q  must be 
equal to a zero vector. 
 

[ ]{ } [ ]{ } 0      0 qqqp =+⇒=
∂
∂ q Hp H

q

cU
       (7) 

 
The equation above is obtained by considering the fact that [ ]H  is symmetric and therefore 

[ ] [ ]pq
T 

qp HH = . 

In conventional design methods, { }q  is obtained by solving the Equation (7), resulting in 
 

{ } [ ] [ ]{ }p HHq    qp
-1

qq−=             (8) 
 
In the present approach, finding the inverse of [Hqq] is not required. Thus {q} should be selected such that 
Eq. (7) holds. The left-hand side of this equation is a zero vector, and should be changed to a scalar. The 
best is to find its norm. For this norm to be zero, all the entries must be zero [10]. 

Thus the equality constraint will then be 
 

[ ]{ } [ ]{ }( ) 0       norm      : )( =+ pHqHx qpqqh    (9) 
 
The inequality constraints: In order to control the stability and yield conditions for all members of a 
frame structure, the following constraints must be satisfied: 
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In which fa and fb are the axial and flexural member stresses, respectively. Fy is the yield stress; The 
corresponding allowable stresses Fa and Fb in relations (10.1) to (10.3) are calculated based on the design 
code provisions AISC [14]. driftΔ  is the lateral displacement at the top level of the frame, and allowableΔ  is 
the displacement permitted by the code of practice, which is taken as 0.005 times the height of the frame. 
The constants k and cm are taken as 1.5 and 1.0, respectively. 
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The inequality constraint for the solution will be 
 

[ ]∑
=

=
m

1i
igg 0 , )(max  )( xx            (11) 

 
Penalty Function: The penalty function is defined as follows: 
 

( ))( )( )()( xxbx ghf penalty β+α×=W        (12) 
 
Where α  and β  are user defined coefficients. Therefore, the main goal will be to minimize the following 
function: 

( ))( )( 1)()()()( xxbxbx ghf penalty β+α+×=+= WWF      (13) 
 

3. GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZATION 
 
a) Basic concepts of genetic algorithms 
 
Genetic algorithm (GA) is a well-known and frequently used evolutionary computation technique. This 
method was originally developed by John Holland [15] and his PhD students Hassan et al. [16]. The idea 
was inspired from Darwin’s natural selection theorem which is based on the idea of the survival of the 
fittest. The GA is inspired by the principles of genetics and evolution, and mimics the reproduction 
behavior observed in biological populations. 

In GA, a candidate solution for a specific problem is called an individual or a chromosome and 
consists of a linear list of genes. GA begins its search from a randomly generated population of designs 
that evolve over successive generations (iterations), eliminating the need for a user-supplied starting point. 
To perform its optimization-like process, the GA employs three operators to propagate its population from 
one generation to another. The first operator is the “selection” operator in which the GA considers the 
principal of “survival of the fittest” to select and generate individuals (design solutions) that are adapted to 
their environment. The second operator is the “crossover” operator, which mimics mating in biological 
populations. The crossover operator propagates features of good surviving designs from the current 
population into the future population, which will have a better fitness value on average. The last operator 
is “mutation”, which promotes diversity in population characteristics. The mutation operator allows for 
global search of the design space and prevents the algorithm from getting trapped in local minima [16]. 
 
b) Basic concepts of PSO 
 

Particle Swarm Optimization (PSO) is one of the recent evolutionary optimization methods. This 
technique was originally developed by Kennedy & Eberhart [17] in order to solve problems with 
continuous search space. PSO is based on the metaphor of social interaction and communication, such as 
bird flocking and fish schooling. This algorithm can be easily implemented and it is computationally 
inexpensive, since its memory and CPU speed requirements are low [18]. 

PSO shares many common points with GA. It conducts the search using a population of particles 
which correspond to individuals in GA. Both algorithms start with a randomly generated population. PSO 
does not have a direct recombination operator. However, the stochastic acceleration of a particle towards 
its previous best position, as well as towards the best particle of the swarm (or towards the best in its 
neighborhood in the local version), resembles the recombination procedure in evolutionary computation 
[19-21]. 
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Compared to GA, the PSO has some attractive characteristics. It has memory, so knowledge of good 
solutions is retained by all particles, whereas in GA, previous knowledge of the problem is destroyed once 
the population changes. PSO does not use the filtering operation (such as selection in GAs), and all the 
members of the population are maintained through the search procedure to share their information 
effectively. 

PSO uses social rules to search in the design space by controlling the trajectories of a set of 
independent particles. The position of each particle, ix , representing a particular solution of the problem, 
is used to compute the value of the fitness function to be optimized. Each particle may change its position, 
and consequently may explore the solution space, simply varying its associated velocity. In fact, the main 
PSO operator is the velocity update, that takes into account the best position, in terms of fitness value 
reached by all the particles during their paths, t

gp , and the best position that the agent itself has reached 
during its search, t

ip , resulting in a migration of the entire swarm towards the global optimum.  
At each iteration, the particle moves around according to its velocity and position; the cost function to 

be optimized is evaluated for each particle in order to rank the current location. The velocity of the particle 
is then stochastically updated according to  
 

( ) ( )ttt
22

ttt
11

t1t   C     C    igiiii rr xpxpvv −+−+ω=+    (14.1) 
 

1tt1t   ++ += iii vxx                                           (14.2) 
 
Equation (14.1) describes how the velocity is dynamically updated and Eq. (14.2) is used to update the 
position of the “flying” particles. 

t
iv  is the velocity vector at iteration t, 1r  and 2r  represent random numbers in the range [0,1]; t

ip  
denotes the best ever particle position of particle i, and t

gp  corresponds to the global best position in the 
swarm up to iteration t [19]. 

The remaining terms are problem dependent parameters; for example, 1C  and 2C  represent ‘‘trust’’ 
parameters indicating how much confidence the current particle has in itself ( 1C  or cognitive parameter) 
and how much confidence it has in the swarm ( 2C  or social parameter), and ω  is the inertia weight. The 
latter term plays an important role in the PSO convergence behavior since it is employed to control the 
exploration abilities of the swarm. It directly affects the current velocity, which in turn is based on the 
previous history of velocities. Large inertia weights allow for wide velocity updates providing the global 
exploration of the search space, while small inertia values concentrate the velocity updates to nearby 
regions of the design space.  
 

4. HYBRID OF GA AND PSO (HGAPSO) 
 
Although GAs have been successfully applied to a wide spectrum of problems, using GAs for large-scale 
optimization could be very expensive due to its requirement of a large number of function evaluations for 
convergence. This would result in a prohibitive cost for computation of function evaluations even with the 
best computational facilities available today. 

Considering the efficiency of the PSO, and the compensatory property of GA and PSO, combining the 
searching abilities of both methods in one algorithm seems to be a logical approach. In this paper, the 
hybrid of GA and PSO named HGAPSO, originally presented by Juang [22], is used. This algorithm 
consists of four major operators: enhancement, selection, crossover, and mutation. 
The flowchart of the HGAPSO is shown in Fig. 1. 
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Fig. 1 The flow chart of the HGAPSO 

 
Before describing the details of the algorithm and its operators, the issue of coding is presented. 

It is obvious that the feasible region in constrained optimization problems may be of any shape 
(convex or concave and connected or disjointed). In real-parameter constrained optimization using 
GAs, schemata specifying contiguous regions in the search space (such as 110*…*) may be 
considered to be more important than schemata specifying discrete regions in the search space (such 
as (*1*10*...*), in general. Since, any arbitrary contiguous region in the search space cannot be 
represented by single Holland’s schema and since the feasible search space can usually be of any 
arbitrary shape, it is expected that the single-point crossover operator used in binary GAs will not 
always be able to create feasible children solutions from two feasible parent solutions.  

The floating-point representation of variables in a GA and a search operator that respects 
contiguous regions in the search space may be able to eliminate the above two difficulties associated 
with binary coding and single-point crossover. 

Hence, a floating point coding scheme is adopted here for all of the GA, PSO and HGAPSO. For 
the frame structures where design variables must have discrete values, the solutions are achieved by 
rounding the design variables to the nearest permissible integer number. 

Random 
population 

Fitness 
evaluation of 
all individuals

Stopping 
criteria 

Best 
individuals 

Find the best half (elites) 
and discard others 

Enhancement 
(PSO) 

Enhanced 
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Offspring 

New population 
(enhanced elites & 
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An elitist strategy has been used in the algorithms of this work, where the best solution is given the 
opportunity to be directly carried over to the next generation. 
 
Enhancement: In each generation, after the fitness values of all the individuals in the population are 
calculated, the top-half best performing ones are marked. These individuals are regarded as elites. Instead 
of reproducing the elites directly to the next generation as elite GAs do, we first enhance the elites. The 
enhancement operation tries to mimic the maturing phenomenon in nature, where individuals will become 
more suitable to the environment after acquiring knowledge from the society. Furthermore, by using these 
enhanced elites as parents, the generated offspring will achieve better performance than those bred by 
original elites [22]. The enhancement of the elites is performed by the velocity and position update 
procedures in PSO (Eqs. (14.1) and (14.2)). 

By analyzing the PSO, Perez and Behdinan [23] presented the stability conditions for the algorithm as 
shown below: 
 

0 C  C 2211 >+ rr         (15.1) 

1
2

 C  C 2211 <ω−
+ rr

                         (15.2) 

1<ω                      (15.3) 
 
Knowing that [0,1]21 ∈rr , , the following parameter selection heuristic was derived: 
 

4 C  C0 21 <+<       (16.1) 

11
2

 C  C 21 <ω<−
+

      (16.2) 

It was concluded that if ω , 1C , and 2C  are selected with the heuristics specified in (16a) and (16b), the 
system will guaranteed convergence to an equilibrium point. 

In this article the parameters 1C , 2C  and ω  are chosen considering the above conditions and 
according to the searching ability needed to solve each of the problems. 

Due to the importance of the inertia weight in controlling the global/local search behavior of the PSO, 
a dynamic improvement has proven useful by forcing an initial global search with a high inertia weight 
( 1≈ω ), and subsequently narrowing down the algorithm exploration to feasible areas of the design space 
by decreasing its value towards local search values ( 50.<ω ). 

In this approach, a dynamic decrease of ω  value has been suggested based on a fraction multiplier 
( wk ) as shown in Eq. (17). When no improvements had been made for a predefined number of 
consecutive design iterations [24]: 
 

t1t ω=ω +
wk                       (17) 

 
It should be noted that the elites in each generation can be from both groups of the previous generation, 
i.e., the enhanced elites or the produced offspring. If the elite i is an offspring produced by the parents of 
the previous generation, then t

iv  is set to zero, and t
ip  is set to t

ix , i.e., the newly generated individual 
itself. Otherwise, t

ip  records the best solution of individual i evolved so far. 
 
Selection: In the HGAPSO, the GA operations are performed on the enhanced elites achieved by PSO.  

In order to select parents for the crossover operation, the tournament selection scheme is used. Two 
enhanced elites are selected randomly, and their fitness values are compared to select the one with better 
fitness as a parent and place it in the mating pool. 
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This scheme is used as the selection operator in the GA as well. 
 
Crossover: Parents are selected randomly from the mating pool in groups of two and two offspring are 
created by performing crossover on the parent solutions. In this paper, a simulated binary crossover (SBX) 
is used. SBX operator is particularly suitable here because the spread of children solutions around parent 
solutions can be controlled using a distribution index, cη . With this operator any arbitrary contiguous 
region can be searched, provided there is enough diversity maintained among the feasible parent solutions 
[24]. 

Here, we have used small values for cη  at the first generations in order to have offspring solutions 
away from parents and to provide a global search. The value of cη  is increased with the increase of 
generation, guiding the algorithm towards a local search. 
 
Mutation: The final genetic operator is mutation. It can create a new genetic material in the population to 
maintain the population’s diversity. 

In this article, mutation is not applied to all of the population, and a mutation probability ( mP ) is 
assigned to every individual according to its fitness value: 
 

ave
avemax

max  if           50 FF
FF
FF

≥⎥
⎦

⎤
⎢
⎣

⎡
−
−

×= i
i

im .P    (18.1) 

ave
avemax

ave  if                  FF
FF
FF

<⎥
⎦

⎤
⎢
⎣

⎡
−
−

= i
i

imP    (18.2) 

 
iF  is the fitness value of the individual i, maxF  and aveF are the maximum and average fitness values of the 

population in each generation. After assigning the mP s, a random number in the range [0, 1] is created for 
each generation. The individuals having a mP  greater than this number are mutated. 

The mutation operator used here is a variable dependent random mutation. In the random mutation 
operator, a solution is created in the vicinity of the parent solution with a uniform probability distribution 
[25]: 
 

( ) iiii rxx Δ−+=+  50   t)(1,1) t(1, .                (19) 
 

ir  is a random number in [0, 1]. iΔ  is the user defined maximum perturbation allowed in the ith decision 
variable( ix ).Care should be taken to check if the above calculation takes 1) t(1, +

ix  outside of the specified 
lower and upper limits. 

In this approach, at each generation, iΔ  for a variable ix  is calculated using the average of that 
variable or the difference between its maximum and minimum in the population, i.e. 
 

( ) )min(-)max(0.5 iii xx×=Δ              (20a) 
 

)ave(0.075)~(0.025 ii x×=Δ                (20b) 
 
Decision on the formula and the multipliers to be used depends on the structure as well as the variables, 
especially for the SAND problem where the design and state variables have different natures and values. 

After applying the GA operators, the offspring and the enhanced elites from PSO, form the new 
population and their fitness is evaluated and compared in order to select the elites for the next generation. 
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5. NUMERICAL EXAMPLES 
 
Example 1 (A 10-bar truss): The first example considers a well-known test problem corresponding to a 
10-bar truss non-convex optimization as shown in Fig. 2. In this problem the cross-sectional area for each 
of the 10 members in the structure are being optimized towards the minimization of total weight. The 
cross-sectional area varies between 0.1 in.2 (0.645 cm2) and 35.0 in.2 (225.806 cm2). Constraints are 
specified in terms of stress and displacement of the truss members. The allowable stress for each member 
is 25 ksi (172368.93 kN/m2) for both tension and compression, and the allowable displacement on the 
nodes is ±2 in. (5.08 cm) in the x and y directions. The density of the material is 0.1 lb/in.3 (27.1447 
kN/m3), Modulus of elasticity is E = 104 ksi (68947572.93 kN/m2) and vertical downward loads of 100 
kips (444.822 kN) are applied at nodes 2 and 4. In total the problem has a variable dimensionality of 12 
(10 design variables and 2 redundant, all in a continuous search space) and constraint dimensionality of 22 
(10 stress constraints and 12 displacement constraints). 

1 2

3 4

5 6
7

8

1

6

5

4 2

3

9

10X

Y

9144mm 9144mm

9144mm

P P

(360in)

  
Fig. 2. The 10-bar truss 

 
The problem is solved by the algorithm presented in the previous section. The population size considered 
is 150. The results related to the three algorithms are presented in Table 1 and compared with the results in 
the literature in Table 2. The highlighted sections present constraint violations. 
 

Table 1. Results for the 10-bar truss 
 

Member Areas-in.2(cm2) GA PSO HGAPSO 

A1 30.4802 (196.646) 30.7081 (198.116) 30.6395 (197.674) 

A2 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 

A3 23.2578 (150.050) 23.9127 (154.275) 23.0607 (148.778) 

A4 15.1859 (97.973) 14.7259 (95.006) 15.0192 (96.898) 

A5 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 

A6 0.546752 (3.527) 0.1 (0.645) 0.591063 (3.813) 

A7 7.4523 (48.079) 8.54672 (55.140) 7.49068 (48.327) 

A8 2.0453 (13.195) 21.0104 (135.551) 21.108 (136.180) 
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Table 1 Continued. 
 

A9 21.5427 (138.985) 20.8107 (134.262) 21.5653 (139.131) 

A10 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 

Weight-lb (kN) 5060.87 (22.511) 5076.68 (22.581) 5061.4 (22.513) 

σmax-ksi  (kN/m2) 24.99999 
(172368.863) 

20.38199 
(140528.874) 

24.9621 
(172107.621) 

Δmax-inch      (cm) 1.9999981 
(5.079995) 

1.99999944 
(5.079999) 

1.9999703 
(5.079925) 

 
The GA presents the best answer, while the answer obtained by PSO is the poorest in quality. 
 

Table 2. Results in the literature for the 10-bar truss 
 

Member 
Areas-
inch2 (cm2) 

Kaveh & 
Rahami 
[10] 

Haftka & 
Grdal [26] 

El-Sayed 
& Jang 
[27] 

Galante 
[24] 

Memari & 
Fuladgar 
[28] 

Rizzi [29] Haug & 
Arora [30] 

A1 30.6677 
(197.856) 

30.52 
(196.903) 

32.966 
(212.683) 

30.44 
(196.387) 

30.561 
(197.167) 

30.731 
(198.264) 

30.031 
(193.748) 

A2 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1(0.645) 0.1 (0.645) 

A3 22.8722 
(147.562) 

23.2 
(149.677) 

22.799 
(147.090) 

21.79 
(140.580) 

27.946 
(180.296) 

23.934 
(154.413) 

23.274 
(150.155) 

A4 15.3445 
(98.997) 

15.22 
(98.193) 

14.146 
(91.264) 

14.26 
(92.000) 

13.619 
(87.864) 

14.733 
(95.051) 

15.286 
(98.619) 

A5 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1(0.645) 0.1 (0.645) 

A6 0.4635 
(2.99) 

0.551 
(3.555) 

0.739 
(4.768) 

0.451 
(2.910) 

0.1  
(0.645) 

0.1 
(0.645) 

0.557 
(3.594) 

A7 7.4796 
(48.255) 

7.457 
(48.109) 

6.381 
(41.168) 

7.628 
(49.213) 

7.907 
(51.013) 

8.542 
(55.110) 

7.468 
(48.181) 

A8 20.9651 
(135.258) 

21.04 
(135.742) 

20.912 
(134.916) 

21.63 
(139.548) 

19.345 
(124.806) 

20.954 
(135.187) 

21.198 
(136.761) 

A9 21.7026 
(140.016) 

21.53 
(138.903) 

20.978 
(135.342) 

21.36 
(137.806) 

19.273 
(124.342) 

21.836 
(140.877) 

21.618 
(139.471) 

A10 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1(0.645) 0.1 (0.645) 
Weight lb 
(kN) 

5061.9 
(22.515) 

5060.8 
(22.510) 

5013.24 
(22.299) 

4987 
(22.182) 

4981.1 
(22.156) 

5061.6 
(22.514) 

5060.92 
(22.514) 

σmax ksi  
(kN/m2) 

24.99468 
(172332.3) 

25.00271 
(172387.7) 

31.28779 
(215721.8) 

25.08667 
(172966.6) 

20.60011 
(142032.8) 

20.35507 
(140343.3) 

24.92077 
(171822.7) 

Δmax inch   
(cm) 

1.999988 
(5.0800) 

1.999965 
(5.0799) 

2.013124 
(5.1133) 

2.027979 
(5.1511) 

2.060467 
(5.2336) 

1.98233 
(5.0351) 

1.999989 
(5.0800) 

Member 
Areas-in.2 

(cm2) 

Ghasemi et 
al. [31] 

Perez & 
Behdinan 
[23] 

Gellatly & 
Berke [32] 

Schmit & 
Miura [33] 

Schmit & 
Miura [33] 

Schmit & 
Farshi [34] 

Dobbs & 
Nelson 
[35] 

A1 25.73 
(166.000) 

33.5 
(216.129) 

31.35 
(202.258) 

30.67 
(197.871) 

30.57 
(197.225) 

33.432 
(215.690) 

30.5 
(196.774) 

A2 0.109 
(0.703) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.369 

(2.381) 0.1 (0.645) 0.1 (0.645) 

A3 24.85 
(160.322) 

22.766 
(146.877) 

20.03 
(129.226) 

23.76 
(153.290) 

23.97 
(154.645) 

24.26 
(156.516) 

23.29 
(150.258) 

A4 16.35 
(105.484) 

14.417 
(93.013) 

15.6 
(100.645) 

14.59 
(94.129) 

14.73 
(95.032) 

14.26 
(92.000) 

15.428 
(99.535) 
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Table 2 Continued. 
 
A5 0.106 

(0.684) 0.1 (0.645) 0.14 
(0.903) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 

A6 0.109 
(0.703) 0.1 (0.645) 0.24 

(1.548) 0.1 (0.645) 0.364 
(2.348) 0.1 (0.645) 0.21 

(1.355) 

A7 8.700 
(56.129) 

7.534 
(48.606) 

8.350 
(53.871) 

8.578 
(55.342) 

8.547 
(55.142) 

8.388 
(54.116) 

7.649 
(49.348) 

A8 21.41 
(138.129) 

20.467 
(132.045) 

22.21 
(143.290) 

21.07 
(135.935) 

21.11 
(136.193) 

20.74 
(133.8060 

20.98 
(135.355) 

A9 22.3 
(143.871) 

20.392 
(131.561) 

22.06 
(142.322) 

20.96 
(135.226) 

20.77 
(134.000) 

19.69 
9127.032) 

21.818 
(140.761) 

A10 0.122 
(0.787) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.32 (2.065) 0.1 (0.645) 0.1 (0.645) 

Weight-lb 
(kN) 

5095.65 
(22.665) 

5024.21 
(22.348) 

5112 
(22.738) 

5076.85 
(22.582) 

5107.3 
(22.717) 

5089 
(22.636) 

5080.0 
(22.596) 

σmax-
ksi(kN/m2) 

18.52549 
(127728.8) 

25.01711 
(172486.9) 

22.93687 
(158144.2) 

20.3494 
(140304.2) 

20.39588 
(140624.6) 

21.19186 
(146112.7) 

24.06749 
(165939.5) 

Δmax-
inch(cm) 

0.01259 
(0.0320) 

2.0389 
(5.1788) 

1.99999 
(5.0800) 

1.99989 
(5.0797) 

1.99998 
(5.0799) 

1.99982 
(5.0795) 

1.99997 
(5.0799) 

 
The convergence for the three algorithms is illustrated in Fig. 3. 

It took about 3812 and 2483 generations for the GA and the PSO algorithms to converge, respectively. 
However the HGAPSO algorithm converged in only 1855 generations. The number of required 
generations for reaching a solution by GA is greater than the other two. Instead, the last result of this 
algorithm is the best. 

Although the HGAPSO does not result in the best answer, compared with the two others, the smaller 
generation and lower function evaluation of this algorithm is noticeable, Fig. 3. 
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Fig. 3. Convergence of the three algorithms for the 10-bar truss 

 
For this truss the last generation for GA, PSO and HGAPSO were 3793, 2434 and 1956, leading to 

average weights of 5066.05lb, 5084.5lb and 5067.6lb, respectively, Fig. 4. 
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Fig. 4. Best weight versus the number of generations for the 10-bar truss 

 
Example 2 (A one-bay eight-storey steel frame): Figure 5 shows the configuration and applied loads of 
a one-bay eight-story frame structure. The 24 members of the structure have been categorized into eight 
groups, as indicated in the figure. The lateral drift at the top of the structure is the only performance 
constraint (no more than 2 in.). The modulus of elasticity is taken as E=200 GPa (29000 ksi) and for the 
material density, ρ=76.8 kN/m3 (2.83×10−4 kips/in.3). 

A set of 267 discrete W-sections from the American Institute of Steel Construction (AISC) are used 
for the possible cross-sectional areas for each member. In total the problem has a variable dimensionality 
of 32 (8 discrete design variables and 24 redundant forces in a continuous search space) and constraint 
dimensionality of 1 (displacement constraint). 

The algorithms require a population size of 500 to converge to the best answers possible. 
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Fig. 5. A one-bay eight-storey frame 
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Optimal values of the 8 design variables obtained by the three algorithms are listed in Table 3. The 
results obtained by the other researchers are illustrated in Table 4. 
 

Table 3. Results for the one-bay eight-storey frame 
 

Group number GA PSO HGAPSO 

1 W21×44 W21×44 W18×35 
2 W18×35 W16×26 W18×35 
3 W14×22 W21×44 W14×22 
4 W12×14 W12×16 W12×16 
5 W16×26 W14×30 W16×31 
6 W18×40 W21×44 W21×44 
7 W18×35 W14×22 W18×35 
8 W12×22 W16×26 W16×26 
Weight (kN) 31.3786 33.9814 31.243 
Δ drift (cm) 5.06415 4.99796 5.06645 

 
The HGAPSO algorithm found the optimal weight of the one-bay eight-story frame to be 31.243 kN 
(7.025 kips). Like the previous example, the PSO seems to be a weak algorithm for reaching an optimal 
solution. 
 

Table 4. Results in the literature for the one-bay eight-storey frame 
 

Group 
Number 

Kaveh & 
Shojaee 
[36] 

Kaveh & 
Talatahari 
[37] 

Kaveh & 
Talatahari 
[37] 

Khot et al. 
[38] 

Camp et al. 
[39] 

1 W 21×50 W 18×35 W 18×35 W 14×34 W 18×46 
2 W 16×26 W 16×31 W 16×31 W 10×39 W 16×31 
3 W 16×26 W 16×26 W 14×22 W10×33 W 16×26 
4 W 12×14 W 14×22 W 12×16 W 8×18 W 12×16 
5 W 16×26 W 16×31 W 21×48 W 21×68 W 18×35 
6 W 18×40 W 18×40 W 18×40 W 24×55 W 18×35 
7 W 18×35 W 16×26 W 16×31 W 21×50 W 18×35 
8 W 14×22 W 14×22 W16×36 W 12×40 W 16×26 
Weight (kN) 31.68 30.91 32.29 41.02 32.83 
Δ drift (cm) 5.00245 5.19599 5.29819 5.052143 5.26538 

 
Figure 6 compares the convergence rate of the three algorithms. Although the PSO does not take as 

many generations as the GA, the quality of the solution obtained by this method is poor and the advantage 
of the GA is its better solution. Although the GA provides an answer with almost the same quality as the 
HGAPSO, the convergence rate of the algorithms show the superiority of the HGAPSO. It took the 
HGAPSO 4968 generations to converge to the solution, while the GA and PSO algorithms converged in 
9318 and 6427 generations, respectively. 

For this frame the last generation for GA, PSO and HGAPSO were 9284, 6416 and 4953, leading to 
average weights of 31.78kN, 35.15kN and 31.63kN, respectively, Fig. 7. 
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Fig. 6. Convergence of the three algorithms for the one-bay eight-storey frame 
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Fig. 7. Best weight versus the number of generations for the one-bay eight-storey frame 

 
Example 3 (A two-bay three-storey steel frame): This frame was optimized by Kameshki and Saka [40] 
considering semi-rigid joints. Fig. 8 shows the configuration and applied loads of the frame. The 15 
members of the structure have been categorized into seven groups, as indicated in the figure. 
 

 
Fig. 8. The two-bay three-storey frame: a) loading of the frame; b) member grouping 

 
The material properties are those of DIN-ST 37: 
Weight density of the material, ρ = 76.9724 kN/m3 
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Modulus of elasticity, E= 2.0594×108 kN/m2 
Yield stress is taken as Fy = 2400 kgf/cm2 (23535.96 kN/m2) 
 
A set of 267 discrete W-sections from the American Institute of Steel Construction (AISC)[39] are used 
for the possible cross-sectional areas for each member. 

In total the problem has a variable dimensionality of 25 (7 discrete design variables and 18 redundant 
forces in a continuous search space). 

The constraints include the design specifications of AISC-ASD presented in the previous section for 
each member. The allowable inter-storey drift is 1.219 cm and allowable sway of the top storey is 3.65 
cm. The population size considered for the problem was 425. 

Optimal values of the seven design variables obtained by the three algorithms are listed in Table 5. 
 

Table 5. Results for the two-bay three-storey frame 
 
 

 
It is apparent from the table that stress constraints were dominant in the design problem. The HGAPSO 
obtained the best solution (37.75168 kN), the GA result was acceptable, but the PSO converged to a local 
optimum again. 

Figure 9 compares the convergence rate of the three algorithms. 
It took the GA 8925 generations to converge to the solution, while the PSO and HGAPSO algorithms 
converged in 4396 and 4262 generations, respectively. 
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Fig. 9. Convergence of the three algorithms for the two-bay three-storey frame 

 

Group Number GA PSO HGAPSO 

1 W16×31 W18×40 W16×31 
2 W18×35 W12×26 W16×36 
3 W10×19 W16×26 W6×9 
4 W21×55 W14×48 W18×55 
5 W16×31 W16×40 W16×31 
6 W10×17 W8×13 W14×26 
7 W21×44 W21×44 W21×44 
Weight (kN) 38.22043 38.87062 37.75168 
Interaction ratio 0.99669 0.99026 0.99754 
Δ storey (cm) 0.45348 0.50146 0.46614 

Δ drift (cm) 1.2675 1.12211 1.3045 
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For this frame the last generation for GA, PSO and HGAPSO were 8925, 4298 and 4380, leading to 
average weights of 38.8kN, 39.83kN and 37.98kN, respectively (see Fig. 10). 
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Fig. 10. Best weight versus the number of generations for the two-bay three-storey frame 

 
Example 4 (A three-bay three-storey steel frame): Figure 11 shows the configuration and applied loads 
of the frame. The 21 members of the structure have been categorized into 12 groups, as indicated in the 
figure. 
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(b) 

Fig. 11. The three-bay three-storey frame; (a) loadings (b) member grouping 
 

The material properties and the sections used are the same as the previous example. 
In total the problem has a variable dimensionality of 39 (12 discrete design variables and 27 redundant 
forces in a continuous search space). 
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The constraints include the design specifications of AISC-ASD for each member. The allowable sway 
of the top storey is 3.17 cm. The population size considered for the problem was 700. 

Optimal values of the 12 design variables obtained by the three algorithms are listed in Table 6. 
 

Table 6. Results for the three-bay three-storey frame 
 

Group Number GA PSO HGAPSO 

1 W21×48 W8×24 W10×26 
2 W18×35 W21×50 W18×40 
3 W18×35 W8×24 W18×35 
4 W21×48 W18×60 W24×55 
5 W14×34 W16×31 W14×34 
6 W10×19 W16×26 W10×19 
7 W21×48 W21×50 W21×48 
8 W21×44 W21×50 W21×44 
9 W18×40 W18×50 W18×40 
10 W21×44 W21×48 W21×50 
11 W18×40 W16×50 W18×40 
12 W18×40 W18×40 W16×40 
Weight (kN) 56.83275 61.04345 56.48630 
Interaction ratio 0.9977 0.9928 0.9959 
Δ drift (cm) 1.06 0.99 1.07 

 
The HGAPSO results in the best answer again, while the GA and PSO are placed second and third in 

obtaining an acceptable solution. 
The convergence rate of the algorithms in Fig. 12 shows the efficiency of the HGAPSO compared 

with the two others as well.  
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Fig. 12. Convergence of the three algorithms for the three-bay three-storey frame 

 
It took the GA 13563 generations to converge, while the PSO and the HGAPSO converged in 8253 

and 6876 generations, respectively. 
For this frame, the last generation for GA, PSO and HGAPSO were 13487, 8234 and 6841, leading to 

average weights of 57.65kN, 63.65kN and 56.95kN, respectively, Fig. 13. 
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Fig. 13. Best weight versus the number of generations for the three-bay three-storey frame 

 
6. CONCLUDING REMARKS 

 
In this paper, different structures are optimized based on the SAND formulation by a hybrid algorithm of 
GA and PSO. HGAPSO introduces the concept of the maturing phenomenon in nature into the evolution 
of individuals originally modelled by GA. The maturing phenomenon is mimicked by PSO, where 
individuals enhance themselves based on social interactions and their private cognition. From the 
perspective of PSO, HGAPSO introduces crossover operation into the society. Thus, the evolution of 
individuals is no longer restricted to be in the same generation. 
In order to demonstrate the performance of HGAPSO, SAND of different structures is carried out by this 
algorithm as well as simple GA and PSO. The results show the superiority of the HGAPSO, especially in 
larger problems with higher degrees of statical indeterminacy.  
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